Site-specific integration of Lmx1a, FoxA2, & Otx2 to optimize dopaminergic differentiation

Site-specific integration of Lmx1a, FoxA2, & Otx2 to optimize dopaminergic differentiation

Funding Type: 
Tools and Technologies II
Grant Number: 
RT2-01880
Approved funds: 
$1,592,897
Disease Focus: 
Parkinson's Disease
Neurological Disorders
Stem Cell Use: 
iPS Cell
Cell Line Generation: 
iPS Cell
Embryonic Stem Cell
Public Abstract: 
The objective of this study is to develop a new, optimized technology to obtain a homogenous population of midbrain dopaminergic (mDA) neurons in a culture dish through neuronal differentiation. Dopaminergic neurons of the midbrain are the main source of dopamine in the mammalian central nervous system. Their loss is associated with one of the most prominent human neurological disorders, Parkinson's disease (PD). There is no cure for PD, or good long-term therapeutics without deleterious side effects. Therefore, there is a great need for novel drugs and therapies to halt or reverse the disease. Recent groundbreaking discoveries allow us to use adult human skin cells, transduce them with specific genes, and generate cells that exhibit virtually all characteristics of embryonic stem cells, termed induced pluripotent stem cells (iPSCs). These cell lines, when derived from PD patient skin cells, can be used as an experimental pre-clinical model to study disease mechanisms unique to PD. These cells will not only serve as an ‘authentic’ model for PD when further differentiated into the specific dopaminergic neurons, but that these cells are actually pathologically affected with PD. All of the current protocols for directed neuronal differentiation from iPSCs are lengthy and suboptimal in terms of efficiency and reproducibility of defined cell populations. This hinders the ability to establish a robust model in-a-dish for the disease of interest, in our case PD-related neurodegeneration. We will use a new, efficient gene integration technology to induce expression of midbrain specific transcription factors in iPSC lines derived from a patient with PD and a sibling control. Forced expression of these midbrain transcription factors will direct iPSCs to differentiate into DA neurons in cell culture. We aim at achieving higher efficiency and reproducibility in generating a homogenous population of midbrain DA neurons, which will lay the foundation for successfully modeling PD and improving hit rates of future drug screening approaches. Our study could also set a milestone towards the establishment of efficient, stable, and reproducible neuronal differentiation using a technology that has proven to be safe and is therefore suitable for cell replacement therapies in human. The absence of cellular models of Parkinson’s disease represents a major bottleneck in the scientific field of Parkinson’s disease, which, if solved, would be instantly translated into a wide range of clinical applications, including drug discovery. This is an essential avenue if we want to offer our patients a new therapeutic approach that can give them a near normal life after being diagnosed with this progressively disabling disease.
Statement of Benefit to California: 
The proposed research could lead to a robust model in-a-dish for Parkinson’s disease (PD)-related neurodegeneration. This outcome would deliver a variety of benefits to the state of California. First, there would be a profound personal impact on patients and their families if the current inevitable decline of PD patients could be halted or reversed. This would bring great happiness and satisfaction to the tens of thousands of Californians affected directly or indirectly by PD. Progress toward a cure for PD is also likely to accelerate the development of treatments for other degenerative disorders. The technology for PD modeling in-a-dish could be applied to other cell types such as cardiomyocytes (for heart diseases) and beta-cells (for diabetes). The impact would likely stimulate medical progress on a variety of conditions in which stem cell based drug screening and therapy could be beneficial. An effective drug and therapy for PD would also bring economic benefits to the state. Currently, there is a huge burden of costs associated with the care of patients with long-term degenerative disorders like PD, which afflict tens of thousands of patients statewide. If the clinical condition of these patients could be improved, the cost of maintenance would be reduced, saving billions in medical costs. Many of these patients would be more able to contribute to the workforce and pay taxes. Another benefit is the effect of novel, cutting-edge technologies developed in California on the business economy of the state. Such technologies can have a profound effect on the competitiveness of California through the formation of new manufacturing and health care delivery facilities that would employ California citizens and bring new sources of revenue to the state. Therefore, this project has the potential to bring health and economic benefits to California that is highly desirable for the state.
Progress Report: 

Year 1

Dopaminergic (DA) neurons of the midbrain are the main source of dopamine in the mammalian central nervous system. Their loss is associated with a prominent human neurological disorder, Parkinson's disease (PD). There is no cure for PD, nor are there any good long-term therapeutics without deleterious side effects. Therefore, there is a great need for novel therapies to halt or reverse the disease. The objective of this study is to develop a new technology to obtain a purer, more abundant population of midbrain DA neurons in a culture dish. Such cells would be useful for disease modeling, drug screening, and development of cell therapies. Recent discoveries allow us to use adult human skin cells, introduce specific genes into them, and generate cells, termed induced pluripotent stem cells (iPSC), that exhibit the characteristics of embryonic stem cells. These iPSC, when derived from PD patient skin cells, can be used as an experimental model to study disease mechanisms that are unique to PD. When differentiated into DA neurons, and these cells are actually pathologically affected with PD. The current methods for directed DA neuronal differentiation from iPSC are inadequate in terms of efficiency and reproducibility. This situation hinders the ability to establish a robust model for PD-related neurodegeneration. In this study, we use a new, efficient gene integration technology to induce expression of midbrain-specific genes in iPSC lines derived from a patient with PD and a normal sibling. Forced expression of these midbrain transcription factor genes directs iPSC to differentiate into DA neurons in cell culture. A purer population of midbrain DA neurons may lay the foundation for successfully modeling PD and improving hit rates in drug screening approaches. The milestones for the first year of the project were to establish PD-specific iPSC lines that contain genomic “docking” sites, termed “attP” sites. In year 2, these iPSC/attP cell lines will be used to insert midbrain-specific transcription factors with high efficiency, mediated by enzymes called integrases. We previously established an improved, high-efficiency, site-specific DNA integration technology in mice. This technology combines the integrase system with newly identified, actively expressed locations in the genome and ensures efficient, uniform gene expression. The PD patient-specific iPSC lines we used were PI-1754, which contains a severe mutation in the SNCA (synuclein alpha) gene, and an unaffected sibling line, PI-1761. The SNCA mutation causes dramatic clinical symptoms of PD, with early-onset progressive disease. We use a homologous recombination-based procedure to place the “docking” site, attP, at well-expressed locations in the SNCA and control iPSC lines (Aim 1.1). We also included a human embryonic stem cell line, H9, to monitor our experimental procedures. The genomic locations we chose for placement of the attP sites included a site on chromosome 22 (Chr22) and a second, backup site on chromosome 19 (Chr19). These two sites were chosen based on mouse studies, in which mouse equivalents of both locations conferred strong gene expression. In order to perform recombination, we constructed targeting vectors, each containing an attP cassette flanked by 5’ and 3’ homologous fragments corresponding to the human genomic location we want to target. For the Chr22 locus, we were able to obtain all 3 targeting constructs for the PI-1754, PI-1761 and H9 cell lines. For technical reasons, we were not able to obtain constructs for the Chr19 location Thus, we decided to focus on the Chr22 locus and move to the next step. We introduced the targeting vectors into the cells and selected for positive clones by both drug selection and green fluorescent protein expression. For the H9 cells, we obtained 110 double positive clones and analyzed 98 of them. We found 8 clones that had targeted the attP site precisely to the Chr22 locus. For the PI-1761 sibling control line, we obtained 44 clones, and 1 of them had the attP site inserted at the Chr22 locus. The PI-1754 SNCA mutant line, on the other hand, grows slowly in cell culture. We are in the process of obtaining enough cells to perform the recombination experiment in that cell line. In summary, we demonstrated that the experimental strategy proposed in the grant indeed worked. We were successful in obtaining iPSC lines with a “docking” site placed in a pre-selected human genomic location. These cell lines are the necessary materials that set the stage for us to fulfill the milestones of year 2.

Year 2

Parkinson's disease (PD) is caused by the loss of dopaminergic (DA) neurons in the midbrain. These DA neurons are the main source of dopamine, an important chemical in the central nervous system. PD is a common neurological disorder, affecting 1% of those at 60 years old and 4% of those over 80. Unfortunately, there is no cure for PD, nor are there any long-term therapeutics without harmful side effects. Therefore, there is a need for new therapies to halt or reverse the disease. The goal of this study is to develop a new technology that helps us obtain a purer, more abundant population of DA neurons in a culture dish and to characterize the resulting cells. These cells will be useful for studying the disease, screening potential drugs, and developing cell therapies. Due to recent discoveries, we can introduce specific genes into adult human skin cells and generate cells similar to embryonic stem cells, termed induced pluripotent stem cells (iPSC). These iPSC, when derived from PD patients, can be used as an experimental model to study disease mechanisms that are unique to PD, because when differentiated into DA neurons, these cells are actually pathologically affected with PD. We are using a PD iPSC line called PI-1754 derived from a patient with a severe mutation in the SNCA gene, which encodes alpha-synuclein. The SNCA mutation causes dramatic clinical symptoms of PD, with early-onset progressive disease. For comparison we are using a normal, unaffected sibling iPSC line PI-1761. We are also using a normal human embryonic stem cell (ESC) line H9 as the gold standard for differentiation. The current methods for differentiating iPSC into DA neurons are not adequate in terms of efficiency and reliability. Our hypothesis is that forced expression of certain midbrain-specific genes called transcription factors will direct iPSC to differentiate more effectively into DA neurons in cell culture. We use transcription factors called Lmx1a, Otx2, and FoxA2, abbreviated L, O, and F. In this project, we have developed a new, efficient gene integration technology that allows us rapidly to introduce and express these transcription factor genes in various combinations, in order to test whether they stimulate the differentiation of iPSC into DA neurons. In the first year of the project, we began establishing iPSC and ESC lines that contained a genomic “landing pad” site for insertion of the transcription factor genes. We carefully chose a location for placement of the genes based on previous work in mouse that suggested that a site on human chromosome 22 would provide strong and constant gene expression. We initially used ordinary homologous recombination to place the landing pad into this site. By the end of year 1 of the project, this method was successful in the normal iPSC and in the ESC, but not in the more difficult-to-grow PD iPSC. To solve this problem, in year 2 we introduced a new and more powerful recombination technology, called TALENs, and were successful in placing the landing pad in the correct position in all three of the lines, including the PD iPSC. We were now in a position to insert the midbrain-specific transcription factor genes with high efficiency. For this step, we developed a new genome engineering methodology called DICE, for dual integrase cassette exchange. In this technology, we use two site-specific integrase enzymes, called phiC31 and Bxb1, to catalyze precise placement of the transcription factor genes into the desired place in the genome. We constructed gene cassettes carrying all pair-wise combinations of the L, O, and F transcription factors, LO, LF, and OF, and the triple combination, LOF. We successfully demonstrated the power of this technology by rapidly generating a large set of iPSC and ESC that contained all the above combinations of transcription factors, as well as lines that contained no transcription factors, as negative controls for comparison. Two examples of each type of line for the 1754 and 1761 iPSC and the H9 ESC were chosen for differentiation and functional characterization studies. Initial results from these studies have demonstrated correct differentiation of neural stem cells and expression of the introduced transcription factor genes. In summary, we were successful in obtaining ESC and iPSC lines from normal and PD patient cells that carry a landing pad in a pre-selected genomic location chosen and validated for strong gene expression. These lines are valuable reagents. We then modified these lines to add DA-associated transcription factors in four combinations. All these lines are currently undergoing differentiation studies in accordance with the year two and three timelines. During year three of the project, the correlation between expression of various transcription factors and the level of DA differentiation will be established. Furthermore, functional studies with the PD versus normal lines will be carried out.

© 2013 California Institute for Regenerative Medicine