Role of the NMD RNA Decay Pathway in Maintaining the Stem-Like State

Role of the NMD RNA Decay Pathway in Maintaining the Stem-Like State

Funding Type: 
Basic Biology IV
Grant Number: 
RB4-06345
Award Value: 
$1,360,450
Disease Focus: 
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
Status: 
Active
Public Abstract: 
A subset of intellectual disability cases in humans are caused by mutations in an X-linked gene essential for a quality control mechanism called nonsense-mediated RNA decay (NMD). Patients with mutations in this gene—UPF3B—commonly have not only ID, but also schizophrenia, autism, and attention-deficit/hyperactivity disorder. Thus, the study of UPF3B and NMD may provide insight into a wide spectrum of cognitive and psychological disorders. To examine how mutations in UPF3B can cause mental defects, we will generate and characterize induced-pluripotent stem cells from intellectual disability patients with mutations in the UPF3B gene. In addition to having a role in neural development, our recent evidence suggests that NMD is important for maintaining the identity of ES cells and progenitor cells. How does NMD do this? While NMD is a quality control mechanism, it is also a well characterized biochemical pathway that serves to rapidly degrade specific subsets of normal messenger ribonucleic acids (mRNAs), the transiently produced copies of our genetic material: deoxyribonucleic acid (DNA). We have obtained evidence that NMD preferentially degrades mRNAs that interfere with the stem cell program (i.e., NMD promotes the decay mRNAs encoding proteins that promote differentiation and inhibit cell proliferation). In this proposal, we will identify the target mRNAs of NMD in stem and progenitor cells and directly address the role of NMD in maintaining the stem-like state.
Statement of Benefit to California: 
iPS cells provide a means to elucidate the mechanisms underlying diseases that afflict a growing number of Californians. Our proposed project concerns making and testing iPS cells from patients with mutations in the UPF3B gene, all of whom have intellectual disabilities. In addition, many of these patients have autism, attention-deficit disorders, and schizophrenia. By using iPS cells to identify the cellular and molecular defects in these patients, we have the potential to ultimately ameliorate the symptoms of many of these patients. This is important, as over 1.6 million people in California have serious mental illness. Moreover, a large proportion of patients with UPF3B mutations have autism, a disorder that has undergone an alarming 12-fold increase in California between 1987 and 2007. The public mental health facilities in California are inadequate to meet the needs of people with mental health disorders. Furthermore, what is provided is expensive: $4.4 billion was spent on public mental health agency services in California in 2006. Mental health problems also exert a heavy burden on California’s criminal justice system. In 2006, over 11,000 children and 40,000 adults with mental health disorders were incarcerated in California’s juvenile justice system. Our research is also directed towards understanding fundamental mechanisms by which all stem cells are maintained, which has the potential to also impact non-psychiatric disorders suffered by Californians.
Progress Report: 

Year 1

A key quality of stem cells is their ability to switch from a proliferative cell state in which they reproduce themselves to a differentiated cell state that ultimately allows them to carry out the functions of a fully mature cell. Most research on the nature of this switch has focused on the role of proteins that determine whether the genetic material—DNA—generates a copy of it itself in the form of messenger RNA, a process called transcription. In stem cells, such proteins—which are called transcription factors—activate the production of messenger RNAs encoding proteins that promote the proliferative and undifferentiated cell state. They also increase the production of messenger mRNAs that encode inhibitors of differentiation and cell proliferation. The level and profile of such transcription factors are altered in response to signals that trigger stem cells to differentiate. For example, transcription factors that promote the undifferentiated cell state are decreased in level and transcription factors that drive differentiation down a particular lineage are increased in level. While this transcription factor-centric view of stem cells explains some aspects of stem cell biology, it is, in of itself, insufficient to explain many of their behaviors, including both their ability to maintain the stem-like state and to differentiate. We hypothesize that a molecular pathway that complements transcription-base mechanisms in controlling stem cell maintenance vs. differentiation decisions is an RNA decay pathway called nonsense-mediated RNA decay (NMD). Messenger RNA decay is as important as transcription in determining the level of messenger RNA. Signals that trigger increased decay of a given messenger RNA leads to decreased levels of its encoded protein, while signals that trigger the opposite response increase the level of the encoded protein. Our project revolves around two main ideas. First, that NMD promotes the stem-like state by preferentially degrading messenger RNAs that encode differentiation-promoting proteins and proliferation inhibitor proteins. Second, that NMD must be downregulated in magnitude to allow stem cells to differentiate. During the progress period, we obtained substantial evidence for both of these hypotheses. With regard to the first hypothesis, we have used genome-wide approaches to identify hundreds of messenger RNAs that are regulated by NMD in both in vivo (in mice) and in vitro (in cell lines). To determine which of these messenger mRNAs are directly degraded by NMD, we have used a variety of approaches. This work has revealed that NMD preferentially degrades messenger RNAs encoding neural differentiation inhibitors and proliferation inhibitors in neural stem cells. In contrast, very few messenger RNAs encoding pro-stem cell proteins or pro-proliferation proteins are degraded by NMD. Together this provides support for our hypothesis that NMD promotes the stem-like state by shifting the proportion of messenger RNAs in a cell towards promoting an undifferentiated, proliferative cell state. With regard to the second hypothesis, we have found that many proteins that are directly involved in the NMD pathway are downregulated upon differentiation of stem and progenitor cells. Not only are NMD proteins reduced in level, but we find that the magnitude of NMD itself is reduced. We have used a variety of molecular techniques to determine whether this NMD downregulatory response has a role in neural differentiation and found that NMD downreglation is both necessary and sufficient for this event. Such experiments have also revealed particular messenger mRNAs degraded by NMD that are crucial for the NMD downregulatory response to promote neural differentiation. Our research has implications for intellectual disability cases in humans caused by mutations in an X-linked gene essential for NMD. Patients with mutations in this gene—UPF3B—not only have intellectual disability, but also schizophrenia, autism, and attention-deficit/hyperactivity disorder. Thus, the study of NMD may provide insight into a wide spectrum of cognitive and psychological disorders. We are currently in the process of generating induced-pluripotent stem (iPS) cells from intellectual disability patients with mutations in the UPF3B gene towards this goal.

© 2013 California Institute for Regenerative Medicine