Engineered Vault NanoCapsules for Efficient and Safe Non-Viral Production of iPS Cells

Funding Type: 
Tools and Technologies II
Grant Number: 
RT2-02016
Investigator: 
ICOC Funds Committed: 
$0
Public Abstract: 
This proposal is directed at RFA 10-02: CIRM Tools and Technology Awards II. This call was developed to support the inception, early stage development and evaluation for stem cell research applications of innovative tools and technologies that will overcome current roadblocks in translational stem cell research. The proposed research is aimed at developing an efficient and safe tool for reprogramming human fibroblasts and blood cells into induced pluripotent stem cells (iPSC) without the use of viruses or viral DNAs, thus avoiding integration of foreign DNA into the genome. The basis of this tool will be a nano-scale particle, called a vault. Vaults are naturally occurring cellular structures found in nearly every cell of the human body. Because of their broad distribution and highly conserved structure, they are quite benign and do not trigger an immune response. Although they are a nano-scale structure, vaults have a sizable hollow interior cavity able to enclose a large payload. Furthermore, they can self-assemble from multiple copies of a single protein in the laboratory and they can be engineered to allow the particle to be utilized for delivery of proteins and/or nucleic acids into cells without toxicity. The research proposed will work out the conditions and properties needed to target vault particles to differentiated (somatic) cells, to package reprogramming proteins or nucleic acids encoding these proteins into the vault particles, and to monitor the functional quality of human iPSCs that are generated by treating cells with engineered vault particles. The roadblocks addressed in this proposal are the safety concerns that have surrounded the use of iPSC since the early report that these cells could be generated. First of all the reprogramming factors are themselves proto-oncogenes, normal genes that can become oncogenes (tumor causing genes) due to mutations or increased expression. Second, the introduction of these genes into somatic cells often requires viral delivery systems, whose use may result in insertion into a cell’s DNA causing mutations and tumor formation. As a consequence stem cell therapeutics awaits the development of a reproducible, reliable and safe non-viral approach for the generation of human iPSCs.
Statement of Benefit to California: 
Over the past few years, reprogramming technologies have been developed which allow pluripotent stem cells to be induced from differentiated cells. These induced pluripotent stem cells (iPSC) have enormous potential to radically alter the practice of medicine, as they can be derived without the use of embryos, and from a patient’s own skin or blood cells. In theory, scientists could differentiate iPSCs into any desired cell type in the laboratory and use them to replace any cell type that is defective or dysfunctional in the patient. To realize the full potential of this exciting technology, we will need a better understanding of how iPSCs are formed, maintained and differentiated. This proposal addresses the safety concerns that have surrounded the use of iPSCs since the early report that these cells could be generated. First of all the reprogramming factors are themselves proto-oncogenes, normal genes that can become oncogenes (tumor causing genes) due to mutations or increased expression. Second, the introduction of these genes into somatic cells often requires viral delivery systems, whose use may result in insertion into a cell’s DNA causing mutations and tumor formation. As a consequence stem cell therapeutics awaits the development of a reproducible, reliable and safe non-viral approach for the generation of human iPSCs. This proposal presents a plan to develop an entirely new tool for generating iPSC that will overcome these limitations. An entirely novel, non-toxic, non-viral vehicle for introducing transcription factor proteins, and/or mRNAs will be engineered, based on the naturally-occurring, non-immunogenic vault nanoparticle. The proposal is a collaboration between three scientists who each bring unique skills and strong research records to the problem, including proven abilities to translate basic science into clinical therapeutics, execute somatic cell reprogramming, and engineer therapeutic delivery systems. The investigators have productive experience working with California industry, and understand the importance of developing tools that will benefit both the health and the economy of California. In addition, this collaborative project will focus diverse research groups with many trainees on an important interdisciplinary project at the interface of science and engineering, thereby training future employees and contributing to the technological and economic development of California. Finally, these novel tools will have future use in regenerative medicine, since technologies perfected here will result in novel, effective therapies that have the potential to improve the health of millions of Californians and of people world-wide. All scientific findings and biomedical materials produced from these studies will be publicly available to non-profit and academic organizations in California, and any intellectual property developed by this Project will be developed under the guidelines of CIRM to benefit the State of California.

© 2013 California Institute for Regenerative Medicine