Funding opportunities

Autologous Retinal Pigmented Epithelial Cells Derived from Induced Pluripotent Stem Cells for the Treatment of Atrophic Age Related Macular Degeneration

Funding Type: 
Early Translational I
Grant Number: 
TR1-01219
Principle Investigator: 
Funds requested: 
$5 945 738
Funding Recommendations: 
Recommended
Grant approved: 
Yes
Public Abstract: 
Statement of Benefit to California: 
Review Summary: 
This application focuses on the development of regenerative therapies to treat age-related macular degeneration (AMD), a leading cause of impaired vision and blindness. The central premise of this work is that stem cell therapies, particularly therapies using autologous cell products, can be used to restore or repair the retinal pigment epithelium (RPE) that degenerates in AMD. The therapeutic plan is to collect autologous somatic cells, reprogram them into pluripotent stem cells, and then terminally differentiate them into a "purified" population of RPE cells to be transplanted into diseased retina. First, the applicants propose to use an episomal vector to generate induced pluripotent stem cells (iPSCs), although they are also developing a small molecule mixture to enhance reprogramming of somatic cells. In the second aim, the applicants will differentiate these iPSCs into RPE cells and characterize them using a variety of morphologic, functional, and immunohistochemical assays. In the third aim, the applicants propose to optimize the RPE differentiation procedures using small molecules to enhance the efficiency of differentiation. Next, they will assess the ability of RPE generated from rodent and human iPSCs to provide structural and functional rescue in rodent models of retinal degeneration. In the fifth aim, the applicants propose to demonstrate that human somatic cells, obtained from individuals of varying ages and including patients with retinal disease, can be induced to form iPSC-derived RPE. In the sixth and final aim, a series of GMP compliant processes will be devised to produce sufficient human RPE for use in preclinical development studies and in clinical trials. The applicants intend to address a number of safety issues with the use of such stem cells, especially the potential for uncontrolled growth and tumor formation. Therefore, effort will be spent on developing means for deriving a homogeneous population of differentiated RPEs without contamination by undifferentiated iPSCs. Further, they will develop methods of delivering the cells into the subretinal space of humans in an efficient manner without injuring the overlying retina. Dose and frequency of dosing will be determined from preclinical efficacy studies. The reviewers agreed that the proposed research addresses a critical medical need. Macular degeneration is a life-altering disease that negatively affects the quality of life of many older individuals, and will impact many more in the near future due to rapid increase in the numbers of older people. For many patients with AMD, current treatment options have limited effectiveness. While embryonic stem cell therapy has shown promise, the issues with immune rejection from allogeneic donors are substantial. The rationale underlying this effort, which is to engineer a patient’s own tissues to restore RPE function with a lower chance of rejection, is very strong and would likely have high impact if brought to fruition. Furthermore, reviewers highlighted the many advantages of the eye as a testing ground for stem cell therapies including its relative immune privilege, its ready accessibility for monitoring and imaging purposes, and the fact that even removal of a diseased eye, (in case of serious complications) is not a life-threatening event Reviewers were very enthusiastic about the experimental approaches proposed in this application. They found the research plan to be well-conceived and feasible, and commented that the proposal is straightforward, well written, and based on convincing precedents that were established in rodent models. Several key strengths were identified that contributed to the reviewers’ enthusiasm. Most importantly, the applicants provided a wealth of convincing preliminary data to support the merits of the scientific approach, such as thorough characterization of the episomal reprogramming factor and successful use of small molecules to enhance hESC growth in the absence of feeder cells. Reviewers were supportive of the use of drug discovery approaches for further identifying and optimizing small molecules to enhance derivation of iPSC from both rodent and human somatic cells (in combination with the unique episomal vector). They also appreciated proposed efforts to characterize the RPE cells that were derived from human and rodent iPSCs, and the emphasis on developing truly homogeneous RPE cell populations. A pure RPE transplant product would decrease the risk of introducing undifferentiated iPSCs into the retina, and therefore decrease the potential for teratoma formation. In addition, the reviewers expressed great confidence in the strength and qualifications of the research team. The principal investigator is an established and respected clinician scientist with an excellent track record in the appropriate field. Furthermore, the outstanding research environment, including the specialized expertise of the collaborators, convinced the reviewers that this team would be well poised to succeed. While these merits were deemed considerable enough to recommend the proposal be funded, the reviewers were concerned about the scale of the proposal and questioned whether it could be realized in its entirety. Several reviewers indicated that due to the highly ambitious end-points, it was unlikely that every aim would be achieved within the limited time frame of this funding program. In particular, the “omics” characterizations were regarded as being too open ended, and applicants were not sufficiently clear in describing how the results of these studies would necessarily advance progress toward human trials. Some reviewers also questioned the long-term fate of the transplanted RPE cells in the damaged retina – they may degenerate due to the diseased environment. The reviewers were also uncertain whether the RPE transplantation would be therapeutic, as rodents do not have a macula and so are limited as a disease model. As a final point, the reviewers wished that more details had been provided about the episomal targeting vector and the manner in which safety of this gene therapy would be addressed. Experiments directly addressing the eye as an environment for teratoma formation (using the proposed cell product) would have strengthened the work, to detect leakiness of the cre-lox strategy. In summary, reviewers felt that the research proposal was of sound rationale, feasible design, and addressed an important unmet need in the field of regenerative medicine. While the end points might be overly ambitious, the reviewers remained generally enthusiastic based on the formidable strength of the research team as well as the merits of the intermediate goals.
Conflicts: 

© 2013 California Institute for Regenerative Medicine