Spinal ischemic paraplegia: modulation by human embryonic stem cell implant.

Spinal ischemic paraplegia: modulation by human embryonic stem cell implant.

Funding Type: 
Comprehensive Grant
Grant Number: 
RC1-00131
Award Value: 
$2,356,090
Disease Focus: 
Spinal Cord Injury
Neurological Disorders
Stem Cell Use: 
Embryonic Stem Cell
Status: 
Closed
Public Abstract: 
Statement of Benefit to California: 
Progress Report: 

Year 1

Transient spinal cord ischemia is a serious complication associated with aortic cross clamping (a surgical procedure required for the repair of aortic aneurysm). Neurological dysfunction resulting from transient spinal cord ischemia may be clinically expressed as paraparesis, fully-developed spastic paraplegia, or flaccid paraplegia. In spastic paraplegia, the underlying spinal pathology is characterized by a selective loss of inhibitory cells (neurons) in the ischemia-injured spinal cord. That loss of inhibition produces increased muscle tone (i.e. spasticity). While there are some current pharmacological treatments for spasticity that provide a certain degree of functional improvement, there are no effective therapies that lead to clinically-relevant, long-lasting recovery. One of the therapeutic approaches pursued by our group is the characterization of functional changes after spinal cord transplantation of neuronal cells previously generated in culture with the goal of replacing missing inhibitory neurons in the spinal cord. In our recent experiments, we characterized the survival and differentiation of human embryonic stem cell-derived neural precursors that were grafted into the spinal cord of rats with a previous spinal ischemic injury. Our initial data demonstrate that spinal grafting of neural precursors generated from 3 independent human embryonic stem cell lines is associated with long-term cell engraftment of grafted cells. A significant population of the grafted cells displayed neuronal differentiation, progressive maturation, and expression of markers which are typical for mature, functional human neurons. Initial analysis of grafted cells also indicated the development of functional connectivity between transplanted neurons and surviving neurons of the recipient. A significant advancement in our effort to characterize the effect of such a treatment was the use of a sorting technique which permits the generation of large quantities of highly-purified neural precursors. The capacity to generate such large quantities of pure cell populations is particularly important in our large preclinical animal model (minipig), which is essential to move this therapeutic approach to clinic. In addition, we characterized an efficient cell freezing protocol. The sorting and freezing techniques together allow large quantities of identical cell populations to be frozen for future transplantation, ensuring a group of animals receives an identical cell population. Our plan for the next year is to perform long-term functional recovery studies in our minipig model of spinal ischemia.

Year 2

Transient spinal cord ischemia is a serious complication associated with aortic cross clamping, i.e., the procedure required to replace aortic aneurysm. The major neurological deficit resulting from spinal ischemic injury is the loss of motor function in lower extremities, also called paraplegia. The pathological mechanism leading to the loss of function is the result of progressive death of spinal cells (i.e., neurons) in the affected region of the spinal cord. At present there is no effective therapy for spinal ischemia-induced paraplegia. In our previous completed studies, we have characterized the survival and neuronal maturation of human embryonic stem cell derived neural precursors analyzed at 2 weeks to 2 months after spinal transplantation in spinal ischemia-injured rats. A comparable survival and maturation was seen compared to fetal human spinal cord-derived cells. In our next studies, we will define the therapeutic potency of spinally grafted ES-NPCs once cells are grafted into the spinal cord of immunodeficient rats (i.e., animals which do not require immunosuppression) and the effect of cell grafting assessed for up to 4 months after cell transplantation. In subsequent studies, the degree of treatment effect will be studied in continuously immunosuppressed minpigs with previous spinal ischemic injury.

Year 3

Transient spinal cord ischemia is a serious complication associated with aortic cross clamping, i.e., the procedure required to replace aortic aneurysm. The major neurological deficit resulting from spinal ischemic injury is the loss of motor function in the lower extremities, also called paraplegia. The pathological mechanism leading to the loss of function is the result of progressive death of spinal cells (i.e., neurons) in the affected region of the spinal cord. At present there is no effective therapy for spinal ischemia-induced paraplegia. In our previous completed studies, we have characterized the survival and neuronal maturation of human embryonic stem cell-derived neural precursors grafted into the lumbar spinal cord in immunodeficient rats and have demonstrated good tolerability of long-term immunosuppression in rodents and minipigs after using subcutaneously implanted tacrolimus pellets. In our ongoing studies, our goal is to characterize the effect of clonally expanded embryonic stem cell-derived neural precursors after spinal grafting in long-term immunosuppressed rats and minipigs and immunodeficient rats with previous spinal ischemic injury.

© 2013 California Institute for Regenerative Medicine