VEGF signaling in adventitial stem cells in vascular physiology and disease

VEGF signaling in adventitial stem cells in vascular physiology and disease

Funding Type: 
New Faculty II
Grant Number: 
RN2-00909
Award Value: 
$3,008,076
Disease Focus: 
Heart Disease
Stem Cell Use: 
Adult Stem Cell
Status: 
Closed
Public Abstract: 
Coronary heart disease is the leading cause of death in the developed world. This disease results from atherosclerosis or fatty deposits in the vessel wall that causes blockage of coronary arteries. Blockage of these arteries cut off supplies of nutrients and oxygen to the heart muscle, causing heart attacks, heart failure or sudden death. To restore coronary blood supply, physicians use guide-wires to position an inflatable balloon at the blockage site of the artery, where the balloon is inflated to open up the artery. This procedure is called percutaneous transluminal coronary angioplasty or PTCA, which is usually accompanied by the placement of a metal tube (or stent) at the diseased site to maintain vessel opening. PTCA is the dominant procedure to restore blood flow in coronary arteries- in the United States alone nearly 1.3 million PTCA procedures were performed in 2004. However, as a response to PTCA-related vessel wall damage, cells from the vessel wall are activated to divide and grow into the vessel lumen, causing re-narrowing or restenosis of the artery. Restenosis of the vessel lumen is the major hurdle limiting the success of PTCA. It occurs in 20-50% of cases within six months of the initial PTCA procedure and requires repeated PTCA to open up the re-narrowed artery, leading to tremendous human and social expenses. Stents which contain drug inhibitors of cell growth (drug eluting stents, or DES) reduce restenosis; however, considerable concerns have emerged regarding the safety of DES due to an increased risk of sudden stent occlusion by platelet aggregates (or thrombosis). This sudden occlusion is caused by a concomitant drug inhibition of cells that cover the raw surface of metal stents to prevent platelet aggregation. This complication is frequently lethal, resulting in death or heart attack in 85% of cases. The safety concerns over DES have created an urgent need to define the mechanisms underlying the biology of restenosis. A population of cells resident in the vessel wall consists of progenitor cells that divide and grow into the vessel lumen when vessels are injured. The repair process mediated by these cells directly contributes to vessel restenosis. Our goal is to understand the biology of these stem cells in the repair of injured arteries- how vessel injury signals these cells to divide and invade the vessel lumen, what molecular effectors control the cellular responses, and how to intercept these signals and effectors to prevent vessel restenosis. This will provide a solid scientific basis for new therapeutic targets and strategies for vessel restenosis after PTCA. The proposal is a targeted response to CIRM New Faculty Awards II. It seeks to extend my research expertise into the field of stem cell biology related to clinically important vascular diseases. We are confident that our proposed studies will generate significant progress in this field, in both scientific knowledge and useful therapies.
Statement of Benefit to California: 
Coronary heart disease is the leading cause of death in California. This disease results from atherosclerosis or fatty deposits in the vessel wall that causes blockage of coronary arteries of the heart, causing heart attacks, heart failure or sudden death. Physicians use wires and balloons to open up the blocked artery (angioplasty) and a metal tube (stent) to keep the artery open and restore blood flow. Although effective, angioplasty and stenting cause some damages to the blood vessel, which leads to a recurrent blockage (or restenosis) of the vessel in 20-50% of patients within 6 months of the procedure. This vessel restenosis requires repeated angioplasties and stenting for restoration of blood flow. Given the large number of patients with coronary heart disease in California, the need for repeated surgical procedures has resulted in tremendous human, social and economic costs in our state. An attempt to reduce vessel restenosis is the placement of drug-eluting stents (or DES) in angioplastied vessels. Although drugs released from the stents reduce vessel restenosis, this approach creates a new and frequently fatal complication- sudden occlusion of the stented arteries. This complication is because drugs in the stents delay the repair of inner lining of the artery, whose function is to prevent platelet aggregation within the lumen of the artery. Sudden platelet aggregation (or thrombosis) within the vessel lumen causes instantaneous obstruction of the artery, leading to acute heart attacks or death. Thus, the safety concerns over DES have created an urgent need to define the mechanisms underlying the biology of restenosis. A population of cells present at the vessel wall possess stem cell characteristics. After vessel injury, these cells increase in number and turn into different kinds of cells, which then migrate from the vessel wall into the lumen, causing blockage of the vessel. Thus, understanding how these cells behave will inspire new ideas for treating recurrent vessel blockage or restenosis. We propose to study how and what molecular signals activate these cells when vessels are injured. Our goal is to provide a scientific strategy of intercepting these signals for the treatment of vessel restenosis. We believe that understanding the biology of vascular stem cells will lead to significant advances in the research and novel therapies of vessel injury and restenosis. Given the scope of this problem , an improved therapy of vessel restenosis will have a significant economic and social impact. We have proposed to use modern methods in genetics, cell biology, and molecular biology to attack the challenges of this project. At the same time, we will train a new generation of bright students and junior scientists in the areas of stem cell biology highly relevant to human disease. This ensures that an essential knowledge base will be preserved, passed on and expanded in California for the foreseeable future.
Progress Report: 

Year 1

Coronary heart disease is the leading cause of death in the developed world. This disease results from atherosclerosis or fatty deposits in the vessel wall that causes blockage of coronary arteries. Blockage of these arteries cut off supplies of nutrients and oxygen to the heart muscle, causing heart attacks, heart failure or sudden death. To restore coronary blood supply, physicians use guide-wires to position an inflatable balloon at the blockage site of the artery, where the balloon is inflated to open up the artery. This procedure is called percutaneous transluminal coronary angioplasty or PTCA, which is usually accompanied by the placement of a metal tube (or stent) at the diseased site to maintain vessel opening. However, as a response to PTCA, cells from the vessel wall are mobilized to divide and grow into the vessel lumen, causing re-narrowing of the artery. Renarrowing of the vessel lumen is the major hurdle limiting the success of PTCA. Mental stents which contain drug inhibitors of cell growth (drug eluting stents, or DES) reduce re-narrowing; however, considerable concerns have emerged regarding the safety of DES due to an increased risk of sudden stent occlusion by platelet aggregates (or thrombosis). This sudden occlusion is caused by a concomitant drug inhibition of cells that cover the raw surface of metal stents to prevent platelet aggregation. This complication is frequently lethal, resulting in death or heart attack in 85% of cases. The safety concerns over DES have created an urgent need to define the mechanisms underlying the biology of vascular re-narrowing. A population of cells resident in the vessel wall consists of stem cells that divide and grow into the vessel lumen when vessels are injured. The repair process mediated by these cells directly contributes to vessel re-narrowing. Our goal is to understand the biology of these stem cells in the repair of injured arteries- how vessel injury signals these cells to divide and invade the vessel lumen, what molecular effectors control the cellular responses, and how to intercept these signals and effectors to prevent vessel re-narrowing. This will provide a solid scientific basis for new therapeutic targets and strategies for vessel re-narrowing after PTCA. In the past year, we have successfully developed in the laboratory a more efficient method of isolating the vessel wall stem cells (or adventitial stem cells) and growing these cells in test tubes. The ability to isolate and grow these stem cells has allowed us to study the effects of many biologically active molecules on these cells critical for vascular repair and re-narrowing. We are now using this method to study molecular pathways that can modify the biological behavior of the vessel wall stem cells. Furthermore, we have developed a different method of injuring the blood vessels to study how the vessel wall stem cells respond to different types of vessel injury. This method allows us to track the mobilization of vessel wall stem cells more precisely in the vascular repair process. We are using this method to study the activity of vessel wall stem cells following injury.

Year 2

Coronary heart disease is the leading cause of death in the developed world. This disease results from atherosclerosis or fatty deposits in the vessel wall that causes blockage of coronary arteries, causing shortage of blood supply with consequent heart attacks, sudden death, or heart failure. To restore coronary blood supply, physicians use guide-wires to position an inflatable balloon at the blockage site of the artery, where the balloon is inflated to open the artery. This angioplasty procedure is usually accompanied by the placement of a metal stent at the diseased site to maintain vessel opening. Such percutaneous coronary intervention (PCI) with angioplasty and stenting is the dominant procedure for opening obstructed coronary arteries. However, PCI activates a population of cells in the vessel wall to grow into the vessel lumen, causing re-narrowing of the artery. This vessel re-narrowing (restenosis) is the major hurdle limiting the success of PCI. Mental stents coated with drug inhibitors of cell growth (drug eluting stents, or DES) reduce re-narrowing; however, considerable concerns have emerged regarding the safety of DES due to an increased risk of sudden stent occlusion by platelet aggregates (or thrombosis) and the need for prolonged anti-platelet therapy, which poses bleeding risks especially to older patients or patients who need surgery. These concerns call for defining mechanisms that control re-narrowing of injured arteries. A population of cells resident in the vessel wall consists of stem cells that are activated when vessels are injured. Activation of these cells directly contributes to vessel re-narrowing. Our goal is to understand how these cells are activated by vessel injury, how injury signals these cells to divide and invade the vessel lumen, what molecular effectors control the cellular responses, and how to intercept these signals and effectors to prevent vessel re-narrowing. In the past year, we successfully developed new methods for isolating and growing these vascular stem cells in test tubes. These new methods allowed us to determine how these stem cells turn into other types of vessel cells after injury and how they contribute to re-narrowing of injured vessels. We are using this method to define molecular pathways that control vessel wall stem cells to respond to vessel injury.

Year 3

Coronary heart disease is a leading cause of morbidity and mortality. This disease results from blockage of coronary arteries that supply blood to the heart muscle. To restore blood supply, physicians use angioplasty to open the obstructed artery and apply stenting to maintain the arterial patency. Approximately 1.3 million angioplasty and stenting procedures are performed every year in the US to relieve coronary obstruction. However, these procedures activate a population of vascular cells to grow into the arterial lumen, causing re-narrowing of the artery. This re-narrowing (restenosis) is the major hurdle limiting the success of angioplasty and stenting. Mental stents coated with drug inhibitors of cell growth (drug eluting stents, or DES) reduce re-narrowing; however, considerable concerns have emerged regarding the safety of DES due to an increased risk of sudden stent occlusion by platelet aggregates (or thrombosis) and the need for prolonged anti-platelet therapy, which poses bleeding risks. These concerns call for defining mechanisms that control re-narrowing of injured arteries. A population of stem cells resides in the arterial wall. These cells are activated when arteries are injured by mechanical stress such as angioplasty and stenting. Activation of these cells directly contributes to arterial re-narrowing. Our goal is to understand how these stem cells are activated by vessel injury, how injury signals these cells to divide and invade the vessel lumen, what molecular effectors control the cellular responses, and how to intercept these signals and effectors to prevent vessel re-narrowing. We developed new methods for isolating and growing these vascular stem cells in test tubes. In the past year, we successfully used these methods to determine how arterial injury or mechanical stress signals the stem cells to produce different types of cells which grow into the arterial lumen, causing narrowing of the artery. We are using these methods and also developing new methods to define molecular pathways that control the reaction of stem cells to arterial injury. This will help identify drug targets for therapeutic intervention.

Year 4

Coronary heart disease, the major cause of morbidity and mortality in our society, results from blockage of the coronary arteries that supply blood to the heart muscle. Blockage of the coronary arteries causes heart attack. Angioplasty and stenting are used to open the obstructed coronary artery and maintain the arterial patency. ~1.3 million angioplasty and stenting procedures are performed in the US every year to treat coronary artery disease. However, these procedures activate a population of vascular cells to grow into the arterial lumen, causing re-narrowing of the artery. This re-narrowing (restenosis) is the major hurdle limiting the success of angioplasty and stenting. Mental stents coated with drug inhibitors of cell growth (drug eluting stents, or DES) reduce re-narrowing; however, considerable concerns have emerged regarding the safety of DES due to an increased risk of sudden stent occlusion by platelet aggregates (or thrombosis) and the need for prolonged anti-platelet therapy, which poses bleeding risks. Defining the mechanisms that control re-narrowing of injured arteries is therefore important for treating coronary artery disease. The arterial wall contains a population of stem cells. These stem cells are activated when arteries are injured by mechanical stress such as angioplasty and stenting. Activation of these cells directly contributes to arterial re-narrowing. Our goal is to understand how these stem cells are activated by vessel injury, how injury signals these cells to divide and invade the vessel lumen, what molecular effectors control the cellular responses, and how to intercept these signals and effectors to prevent vessel re-narrowing. We developed new methods for isolating and growing these vascular stem cells in test tubes, and we have successfully used these methods to determine how arterial injury or mechanical stress signals the stem cells to produce different types of cells which grow into the arterial lumen, causing narrowing of the artery. In the past year, we developed new genetic tools to further understand the mechanism of vascular injury and repair. We are using the new genetic tool to define molecular and cellular pathways that control the reaction of stem cells to arterial injury.

Year 5

Blockage of coronary arteries that supply blood to the heart muscle is the major cause of morbidity and mortality in our society. Angioplasty and stenting are used to open the obstructed coronary artery and maintain the arterial patency. In US, ~1.3 million angioplasty and stenting procedures are performed every year to treat coronary artery disease. Although effective in restoring the blood flow, these procedures activate a population of vascular cells resident in the arterial wall to grow into the vesslel lumen, causing re-narrowing (restenosis) of the treated artery months or years later. This arterial re-narrowing is a major hurdle limiting the success of angioplasty and stenting. Mental stents coated with drug inhibitors of cell growth (drug eluting stents, or DES) reduce re-narrowing; however, the safety of DES has raised considerable concerns due to an increased risk of sudden stent occlusion by platelet aggregates (or thrombosis) as well as the need for prolonged anti-platelet therapy, which poses bleeding risks, especially in the elderly population. It is therefore important to define the underlying mechanisms of re-narrowing of injured arteries in order to design new therapies for coronary artery disease. A population of stem cells resides in the arterial wall. These stem cells are activated when arteries are injured by angioplasty and stenting. Once activated, these cells grow and differentiate into cells that invade the vascular luman and contribute to arterial re-narrowing. We developed new genetic tools to further understand the mechanism of vascular injury and repair. We are using the new genetic tool to define molecular and cellular pathways that control the reaction of stem cells to arterial injury. The goal is to understand how these stem cells are activated by vessel injury, how injury signals these cells to divide and invade the vessel lumen, what molecular effectors control the cellular responses, and how to intercept these signals and effectors to prevent vessel re-narrowing.

Publications

© 2013 California Institute for Regenerative Medicine