Using human embryonic stem cells to treat radiation-induced stem cell loss: Benefits vs cancer risk

Using human embryonic stem cells to treat radiation-induced stem cell loss: Benefits vs cancer risk

Funding Type: 
SEED Grant
Grant Number: 
RS1-00413
Approved funds: 
$593,242
Disease Focus: 
Cancer
Neurological Disorders
Skeletal Muscle
Stem Cell Use: 
Embryonic Stem Cell
Public Abstract: 
A variety of stem cells exist in humans throughout life and maintain their ability to divide and change into multiple cell types. Different types of adult derived stem cells occur throughout the body, and reside within specific tissues that serve as a reserve pool of cells that can replenish other cells lost due to aging, disease, trauma, chemotherapy or exposure to ionizing radiation. When conditions occur that lead to the depletion of these adult derived stem cells the recovery of normal tissue is impaired and a variety of complications result. For example, we have demonstrated that when neural stem cells are depleted after whole brain irradiation a subsequent deficit in cognition occurs, and that when muscle stem cells are depleted after leg irradiation an accelerated loss of muscle mass occurs. While an increase in stem cell numbers after depletion has been shown to lead to some functional recovery in the irradiated tissue, such recovery is usually very prolonged and generally suboptimal.Ionizing radiation is a physical agent that is effective at reducing the number of adult stem cells in nearly all tissues. Normally people are not exposed to doses of radiation that are cause for concern, however, many people are subjected to significant radiation exposures during the course of clinical radiotherapy. While radiotherapy is a front line treatment for many types of cancer, there are often unavoidable side effects associated with the irradiation of normal tissue that can be linked to the depletion of critical stem cell pools. In addition, many of these side effects pose particular threats to pediatric patients undergoing radiotherapy, since children contain more stem cells and suffer higher absolute losses of these cells after irradiation.Based on the foregoing, we will explore the potential utility and risks associated with using human embryonic stem cells (hESC) in the treatment of certain adverse effects associated with radiation-induced stem cell depletion. Our experiments will directly address whether hESCs can be used to replenish specific populations of stem cells in the brain and muscle depleted after irradiation in efforts to prevent subsequent declines in cognition and muscle mass respectively. In addition to using hESC to hasten the functional recovery of tissue after irradiation, we will also test whether implantation of such unique cells holds unforeseen risks for the development of cancer. Evidence suggests that certain types of stem cells may be prone to cancer, and since little is known regarding this issue with respect to hESC, we feel this critical issue must be addressed. Thus, we will investigate whether hESC implanted into animals develop into tumors over time. The studies proposed here comprise a first step in determining how useful hESCs will be in the treatment of humans exposed to ionizing radiation, as well as many other diseases where adult stem cell depletion might be a concern.
Statement of Benefit to California: 
Radiotherapy is a front line treatment used in California for many types of cancer, including brain, breast, prostate, bone and other cancer types presenting surgical complications. Treatment of these cancers through the use of radiation is however, often associated with side effects caused by the depletion of critical stem cell pools contained within non-cancerous normal tissue. While radiotherapy is clearly beneficial overall, many of these side effects have no viable treatment options. If we can demonstrate that human embryonic stem cells (hESC) hold promise as a safe therapeutic agent for the treatment of radiation-induced stem cell depletion, then cancer patients may have a new treatment for countering many of the debilitating side effects associated with radiotherapy. Once developed this new technology could position California to attract cancer patients throughout the United States, and the state would clearly benefit from the increased economic activity associated with a rise in patient numbers.
Progress Report: 

Year 1

We have undertaken an extensive series of studies to delineate the radiation response of human embryonic stem cells (hESCs) and human neural stem cells (hNSCs) both in vitro and in vivo. These studies are important because radiotherapy is a frontline treatment for primary and secondary (metastatic) brain tumors. While radiotherapy is quite beneficial, it is limited by the tolerance of normal tissue to radiation injury. At clinically relevant exposures, patients often develop variable degrees of cognitive dysfunction that manifest as impaired learning and memory, and that have pronounced adverse effects on quality of life. Thus, our studies have been designed to address this serious complication of cranial irradiation. We have now found that transplanted human embryonic stem cells (hESCs) can rescue radiation-induced cognitive impairment in athymic rats, providing the first evidence that such cells can ameliorate radiation-induced normal-tissue damage in the brain. Four months following head-only irradiation and hESC transplantation, the stem cells were found to have migrated toward specific regions of the brain known to support the development of new brain cells throughout life. Cells migrating toward these specialized neural regions were also found to develop into new brain cells. Cognitive analyses of these animals revealed that the rats who had received stem cells performed better in a standard test of brain function which measures the rats’ reactions to novelty. The data suggests that transplanted hESCs can rescue radiation-induced deficits in learning and memory. Additional work is underway to determine whether the rats’ improved cognitive function was due to the functional integration of transplanted stem cells or whether these cells supported and helped repair the rats’ existing brain cells. The application of stem cell therapies to reduce radiation-induced normal tissue damage is still in its infancy. Our finding that transplanted hESCs can rescue radiation-induced cognitive impairment is significant in this regard, and provides evidence that similar types of approaches hold promise for ameliorating normal-tissue damage throughout other target tissues after irradiation.

Year 2

A comprehensive series of studies was undertaken to determine if/how stem cell transplantation could ameliorate the adverse effects of cranial irradiation, both at the cellular and cognitive levels. These studies are important since radiotherapy to the head remains the only tenable option for the control of primary and metastatic brain tumors. Unfortunately, a devastating side-effect of this treatment involves cognitive decline in ~50% of those patients surviving ≥ 18 months. Pediatric patients treated for brain tumors can lose up to 3 IQ points per year, making the use of irradiation particularly problematic for this patient class. Thus, the purpose of these studies was to determine whether cranial transplantation of stem cells could afford some relief from the cognitive declines typical in patients afflicted with brain tumors, and subjected to cranial radiotherapy. Human embryonic (hESCs) and neural (hNSCs) stem cells were implanted into the brain of rats following head only irradiation. At 1 and 4 months later, rats were tested for cognitive performance using a series of specialized tests designed to determine the extent of radiation injury and the extent that transplanted cells ameliorated any radiation-induced cognitive deficits. These cognitive tasks take advantage of the innate tendency of rats to explore novelty. Successful performance of this task has been shown to rely on intact spatial memory function, a brain function known to be adversely impacted by irradiation. Our data shows that irradiation elicits significant deficits in learning and spatial task recognition 1 and 4-months following irradiation. We have now demonstrated conclusively, and for the first time, that irradiated animals receiving targeted transplantation of hESCs or hNSCs 2-days after, show significant recovery of these radiation induced cognitive decrements. In sum, our data shows the capability of 2 stem cell types (hESC and hNSC) to improve radiation-induced cognitive dysfunction at 1 and 4 months post-grafting, and demonstrates that stem cell based therapies can be used to effectively to reduce a serious complication of cranial irradiation.

© 2013 California Institute for Regenerative Medicine