Funding opportunities

Training Program in Stem Cell Research

Funding Type: 
Research Training II
Grant Number: 
Principle Investigator: 
Funds requested: 
$3 899 912
Funding Recommendations: 
Grant approved: 
Public Abstract: 
Our goal is to continue the Type I CIRM-funded Comprehensive Training Program that was established at this institution nearly 3 years ago. Specifically, we want to support 6 graduate students, 6 postdoctoral (Ph.D.) fellows, and 4 clinician-scientists (M.D. and or Ph.D.). We provide a unique training environment for students at all levels who are pursuing careers in regenerative medicine. Specifically, our institution offers a world-class research training experience in the context of an equally prestigious medical school and clinical enterprise. We are also noted for our faculty, a diverse and talented group of individuals—1,500 full-time members who are renowned for their dedication to the training process. Additionally, this institution has a long history of supporting human embryonic stem cell research within a framework of the highest ethical standards of conduct. In this productive research environment, our regenerative medicine institute fosters work toward regenerative medicine therapies. The regenerative medicine institute has 7 pipelines that are designed to promote the development of cell-based therapies for repair/regeneration of cardiovascular, neural, pancreas and liver, hematopoietic, musculoskeletal, epithelial, and reproductive tissues. Each pipeline integrates the research of numerous investigators who are working together to translate basic research discoveries into clinically viable therapies. The pipelines are supported by programs that cut across several disciplines, including Human Embryonic Stem Cells, Cancer, Immunology, Genetics, and Bioengineering. Regenerative medicine institute research is supported by key technology core facilities. Additionally, we were awarded a grant to build and run a CIRM Shared Laboratory and Teaching Facility that will be an important resource for our trainees and a CIRM Major Facilities Award that will allow consolidation and expansion of stem cell-related activities in a new building. With regard to campus-wide events, the regenerative medicine institute sponsors many well-attended series, including regularly scheduled seminars, journal clubs, a young-faculty forum, and an annual retreat. These events take place against a backdrop of stimulating activities with similar formats in other programs that cover cutting-edge research developments in the U.S. and around the world. In this context, CIRM trainees at this university will have several different types of learning experiences that include formal courses in stem cell biology and related topics such as human development and cell biology. Ethical issues will be addressed in a course that is solely devoted to this topic. Trainees will also do research with world-class mentors who focus on transforming basic research discoveries into clinical applications. Thus, this university provides an exceptional and exciting environment for trainees who will be the next generation of leaders in the field of regenerative medicine.
Statement of Benefit to California: 
We envision that the citizens of the state of California will benefit in many ways from continuing this institution’s Comprehensive Training Program for graduate students, postdoctoral fellows (Ph.D.), and clinician-scientists (M.D. and/or Ph.D.). Collectively, the basic research, translational strategies, and clinical therapies that will emerge from the work of this university’s California Institute for Regenerative Medicine (CIRM)-funded trainees will be an important stimulus to the state economy, particularly the biotechnology sector and associated medical enterprises. Additionally, specific groups of individuals will directly benefit from work that is focused on cell-based therapies for repairing tissues and organs whose damage leads to common medical conditions, such as diabetes, cardiovascular disease, Parkinson’s disease, paralysis and/or immune dysfunction. On the way to achieving the CIRM’s ultimate goals in terms of novel regenerative therapies for patients, we envision that numerous other benefits will emerge. For example, human embryonic stem cell (hESC) systems are powerful tools for unraveling the molecular bases of human development, which remain largely a black box. A fundamental lack of understanding regarding the mechanisms that give rise to the hundreds of cell types that form tissues and organs makes it extremely difficult to discern why these processes sometimes go awry, leading to birth defects and/or setting the stage for many diseases. Additionally, it is likely that novel therapies for other medical conditions will emerge. In this regard, some forms of cancer are now thought to be associated with the proliferation of stem cells that carry mutations in genes that promote their self-renewal rather than differentiation and integration into the compartment that they normally occupy. Other important applications include drug development. For example, hESCs and their differentiated progeny could be used to screen lead compounds for efficacy, safety and/or toxicity. Where will the workforce come from that will enable this revolution in how the medical establishment approaches patient care? Given the fact that hESCs were first described just 10 years ago, this is a very young field that must be rapidly populated with scientists and clinicians who are specially trained in all aspects of regenerative medicine, a new specialty. This necessity makes the funding of CIRM-sponsored training programs especially critical for institutions such as ours that have the ability to make important research discoveries and translate them into clinical therapies. In this regard, our university has a long and distinguished history of training leaders in science and/or medicine who easily traverse the boundaries between academia and industry. Our past successes strongly suggest that our CIRM-funded training programs will be equally successful. Accordingly, we expect that our trainees will become leaders in the field.
Review Summary: 
This is a competitive renewal application of a Type I training program. Funds to support six graduate students, six postdoctoral fellows and four clinician scientists are requested. The application represents a major effort by the host institution in basic and translation research in the field of stem cells. The training program will include core curriculum, with required and optional courses, laboratory work, seminars, journal clubs, stem cell symposia and scientific retreats. Reviewers considered the quality and design of the program to be excellent. The scope of the program was judged as suitable for providing the appropriate level of training in stem cell research. One reviewer expressed concern that only one week devoted to a laboratory techniques course on culturing hESC was insufficient to learn the necessary skills required to culture cells that are generally difficult to grow. The one-day workshop on the translational aspects of ES cell research at a local stem cell company was considered as a strength of the program. The quality of the environment, resources and faculty at the host institution was considered to be among the best in the nation. The progress of the ongoing CIRM-funded training program, as judged from the publication record of current trainees, appears to be good. The review panel found the program director to be exceptionally well qualified to lead the program. However, some concerns were raised about the commitment of only 2% effort by the program director for administering the program. Some of the review panel felt that the program director is over-committed, despite the superb qualifications, and that the program could suffer. The training program director will continue to be assisted by an associate director who is primarily responsible for the training of the clinician scientists. Reviewers found this division of supervisory roles to be fine. The review panel applauded the role of the seven member steering committee to oversee the progress of the training program biannually. The plan for monitoring trainee performance was considered to be thorough and complete. The review panel appreciated the fact that the host institution is making concerted efforts to increase diversity in the training program. Institutional commitment to the program was also judged to be strong. Overall reviewers were very enthusiastic about this training program.

© 2013 California Institute for Regenerative Medicine